Sesgos algorítmicos y su influencia en las políticas públicas

Sesgos algorítmicos y su influencia en las políticas públicas

Los sesgos algorítmicos ocurren cuando sistemas basados en datos y reglas automáticas reproducen o amplifican discriminaciones existentes. Cuando estos sistemas se emplean en decisiones públicas —como justicia penal, salud, empleo, servicios sociales o vigilancia— las consecuencias pueden afectar derechos, recursos y confianza democrática. A continuación se analiza qué son, cómo aparecen, ejemplos documentados, impactos concretos y medidas de mitigación.

Qué son los sesgos algorítmicos

Un sesgo algorítmico aparece cuando un sistema o modelo automatizado genera de manera constante resultados diferentes entre diversos colectivos sociales (como sexo, raza, nivel socioeconómico, edad o zona de residencia). Dichas disparidades pueden originarse por múltiples factores:

  • Datos históricos sesgados: registros administrativos que reflejan decisiones humanas previas discriminatorias.
  • Variables proxy: uso de indicadores que, sin intención, actúan como sustitutos de características protegidas (por ejemplo, zona postal como proxy de raza).
  • Falta de representatividad: muestras de entrenamiento que no incluyen suficientes casos de grupos minoritarios.
  • Objetivos mal definidos: optimizar un indicador (costes, precisión global) sin medir equidad entre grupos.
  • Retroalimentación y bucles: despliegue del sistema que altera el comportamiento y genera más datos sesgados, reforzando la desigualdad.

Muestras y situaciones registradas

  • Sistemas de evaluación de riesgo penal: diversas investigaciones académicas y periodísticas han evidenciado que ciertas herramientas diseñadas para anticipar la reincidencia solían marcar con mayor frecuencia a personas negras como de alto riesgo y a personas blancas como de bajo riesgo, pese a que las tasas reales de reincidencia eran comparables, lo que terminaba generando medidas más restrictivas para algunos grupos.
  • Herramientas de selección de personal: varias empresas tecnológicas han decidido abandonar algoritmos de selección después de constatar que perjudicaban currículos asociados a perfiles femeninos, por ejemplo, por la pertenencia a organizaciones de mujeres o por haberse graduado en instituciones con mayoría femenina.
  • Reconocimiento facial y vigilancia: distintos estudios independientes identificaron errores más frecuentes al analizar rostros de mujeres y de personas con tonos de piel más oscuros. En varios países se documentaron detenciones equivocadas derivadas de coincidencias fallidas, lo cual impulsó la imposición de moratorias y vetos locales a su uso por parte de cuerpos de seguridad.
  • Algoritmos sanitarios: algunos análisis revelaron que ciertos modelos utilizados para asignar prioridad en programas de atención intensiva infravaloraban las necesidades de pacientes pertenecientes a minorías cuando incorporaban el gasto sanitario histórico como indicador de necesidad, alejando recursos de quienes realmente los necesitaban.

Efectos y amenazas concretas en la toma de decisiones públicas

  • Discriminación institucionalizada: las decisiones automatizadas pueden afianzar tratos desiguales al otorgar acceso a empleo, salud o justicia.
  • Pérdida de derechos y libertades: fallos en sistemas de vigilancia o en evaluaciones de riesgo penal pueden desembocar en detenciones improcedentes, estigmas o restricciones injustificadas.
  • Desigualdad en asignación de recursos: los sesgos presentes en modelos que distribuyen servicios sociales o sanitarios pueden dejar sin apoyos clave a comunidades en situación vulnerable.
  • Erosión de la confianza pública: la falta de transparencia y los fallos persistentes debilitan la credibilidad de instituciones que delegan sus decisiones en algoritmos.
  • Retroalimentación negativa: una mayor vigilancia o número de sanciones en un barrio produce más registros de delitos, reforzando el modelo y prolongando la exposición excesiva de esa comunidad.
  • Costes económicos y legales: litigios, indemnizaciones y revisiones normativas generan gastos públicos y retrasos en la prestación de servicios.

Cómo se detectan y miden los sesgos

La detección exige análisis desagregado por grupos relevantes y métricas de equidad además de medidas globales de rendimiento. Entre prácticas útiles:

  • Desagregación de resultados: comparar tasas de falsos positivos, falsos negativos, sensibilidad y especificidad por grupo.
  • Pruebas de impacto: simulaciones que muestran cómo cambia la distribución de beneficios y cargas antes y después del despliegue.
  • Auditorías independientes: revisión externa del código, datos y decisiones para identificar proxies discriminatorios y errores metodológicos.
  • Evaluaciones de robustez: tests con datos sintéticos y datos de poblaciones subrepresentadas.

Estrategias para mitigar los riesgos

  • Transparencia y documentación: difundir una descripción clara de los datos, los propósitos, las limitaciones y las métricas de equidad, además de dejar constancia de las decisiones de diseño.
  • Evaluación de impacto algorítmico: requerir análisis formales previos al despliegue en áreas delicadas que valoren riesgos y estrategias de mitigación.
  • Participación y gobernanza: integrar en el proceso a las comunidades implicadas, a entidades de derechos humanos y a especialistas de distintos ámbitos para colaborar en el diseño y la supervisión.
  • Datos representativos y limpieza: ampliar la diversidad y calidad de los datos y suprimir proxies que puedan perpetuar sesgos discriminatorios.
  • Supervisión humana significativa: asegurar que exista intervención humana en decisiones finales de alto riesgo y preparar a los responsables para identificar fallos.
  • Auditorías periódicas: aplicar revisiones externas de forma constante con el fin de encontrar deterioros del modelo y consecuencias imprevistas.
  • Límites de uso: vetar o limitar la utilización de algoritmos en resoluciones irreversibles o de gran trascendencia cuando no haya garantías firmes de equidad.

Sugerencias destinadas a las políticas públicas

  • Marco regulatorio claro: establecer obligaciones de transparencia, derechos de explicación y normas de responsabilidad para entidades públicas que usen algoritmos.
  • Protocolos de prueba antes del despliegue: pilotos controlados y evaluación de impactos sociales y de derechos humanos.
  • Creación de unidades de auditoría pública: equipos técnicos independientes que revisen modelos, datos y decisiones y publiquen resultados accesibles.
  • Acceso a recursos y reparación: mecanismos para que personas afectadas soliciten revisión humana y reparaciones en caso de daño.
  • Capacitación y alfabetización digital: formar a funcionarios y ciudadanía para comprender limitaciones y riesgos de la inteligencia artificial y el aprendizaje automático.

Los sesgos algorítmicos en decisiones públicas no son solo fallos técnicos: reflejan y pueden agravar desigualdades sociales. Su peligro radica en la escala y la apariencia de neutralidad que otorgan a decisiones que en realidad reproduzcan prejuicios históricos o errores de modelado. La respuesta efectiva requiere combinar controles técnicos (mejores datos, auditorías, métricas de equidad) con marcos éticos y legales que exijan transparencia, participación ciudadana y responsabilidad. Solo así la automatización puede servir al interés público sin socavar derechos ni aumentar la desigualdad, manteniendo a las personas y la rendición de cuentas en el centro de la toma de decisiones.